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State Space Design
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Pole Assignment Problem
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Some Definitions

[ ]

Define the matrices 
: [ -  |   ]

            :  {columns form a basis for ker[ ]} ,  ,  

Note:
controllability dim ker
rank rank

n k m k

S I A B
N

R S N R M R
M

S n
B m N m

N N

λ

λ
λ λ λ λ

λ

λ

λ

λλ

λ

× ×

=

⎡ ⎤
= = ∈ ∈⎢ ⎥

⎣ ⎦

⇒ =

= ⇒ =

=



Main Result on Pole 
Assignment
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Let , 1, ,  be a set of self-
conjugate scalars. There exists a real  matrix  such that
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Proof: Necessity
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Proof: Sufficiency, 1
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Proof: Sufficiency, 2
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Assumption 1) implies that this is always possible. 
If the 's  are real, we simply compute
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Proof: Sufficiency 3
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Geometry
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Geometry 2
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Geometry 3
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The projection is a linear map : ,  such that 
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Geometry 4
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Example: F-16 
landing approach
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Example: F-16 state feedback
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Example: F-16 Rynaski “robust observer”
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Example: F-16
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Example F-16
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F-16 CCV
The first YF-16 (72-1567) was rebuilt in December 1975 to become the 
USAF Flight Dynamics Laboratory's Control Configured Vehicle (CCV). 
CCV aircraft have independent or "decoupled" flight control surfaces, 
which make it possible to maneuver in one plane without movement in 
another--for example, turning without having to bank. 
The CCV YF-16 was fitted with twin vertical canards added underneath 
the air intake, and flight controls were modified to permit use of wing 
trailing edge flaperons acting in combination with the all moving 
stabilator. 
The YF-16/CCV flew for the first time on March 16, 1976, piloted by 
David J. Thigpen. On June 24, 1976, it was seriously damaged in a 
crash landing after its engine failed during a landing approach. The 
aircraft was repaired and its flight test program was resumed. The last 
flight of the YF-16/CCV was on June 31, 1977, after 87 sorties and 125 
air hours had been logged.



F-16 AFTI
The Flight Dynamics Laboratory of the Air Force Systems Command sponsored 
an Advanced Fighter Technology Integration (AFTI) program. In 1979, General 
Dynamics was awarded a contract to convert the fifth FSD F-16A (75-0750) into 
an AFTI aircraft. It capitalized on the experience gained with the CCV (Control 
Configured Vehicle) F-16 (72-1567). 
The AFTI F-16 was fitted with twin canard surfaces mounted below the air 
intake, these surfaces having been taken from the CCV/F-16. It had a full-
authority triplex Digital Flight Control System (DFCS) and an Automated 
Maneuvering Attack System (AMAS). This system provides six independent 
degrees of freedom. 
It was designed to be fault tolerant, so that no single failure should affect correct 
operation. In the event of a second fault, the system reverts to a standby 
condition which will permit safe flight to continue. The system incorporates an 
analog backup flight-control system. 
The AFTI  first took to the air July 10. Phase I testing involved the demonstration 
of direct translational maneuvering capability. Phase II testing (1984-87) 
involved F-16C-standard avionics with AMAS. The AMAS enabled the AFTI/F-
16 to translate in all three axes at a constant angle of attack and to be pointed 
up to six degrees off the flight vector. 
In recent years, the AFTI/F-16 became associated with close air support (CAS) 
studies, some of them conducted by NASA. These studies began in 1991. 



Multimode, High 
Maneuverability Flight Control

Sobel & Shapiro, 1985
Longitudinal

Pitch pointing/ vertical translation - command the pitch 
angle without a change in flight path angle
Direct lift – command normal acceleration (or flight path 
angle rate) without affecting angle of attack

Lateral
Yaw pointing/ lateral translation– decouple the lateral 
directional response from roll (bank) angle and rate and 
yaw rate
Direct sideforce – command lateral acceleration without a 
change in sideslip angle



Example: F-16 CCV



F-16 CCV – pitch pointing

Objectives: 
command the pitch angle while maintaining the 
flight path angle
Stabilize short period mode, ζ=0.8, ω=7 rad/s

Measured variables: pitch rate, normal 
acceleration (at pilot station), flight path 
angle, surface deflections



F-16 CCV – pitch pointing
Replace θ by γ+α, so that θ equation is replaced by θ equation.
Choose eigenvectors in an attempt to decouple pitch rate and flight path angle.



F-16 CCV pitch poining



Example L-1011, Shapiro & 
Chung, 1983
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